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The Spatial Capacity of a Slo’tted ALOHA Multihop 
Packet Radio Network  with  Capture 

RANDOLPH NELSON AND LEONARD KLEINROCK, FELLOW, IEEE 

A bstract-In  this paper we  determine  throughput equations  for  a packet 
radio  network  where  terminals are randomly  distributed on the plane, are 
able to capture  transmitted  signals,  and  use  slotted ALOHA to  access the 
channel. We find that  the throughput  of the  network is a strictly  increasing 
function  of the  receiver’s  ability to capture  signals,  and  depends on the 
transmission range of the  terminals and their  probability of transmitting 
packets.  Under ideal circumstances, we show the  expected fraction  of 
terminals in the  network  that are engaged  in  successful  traffic in any ’ ,slot 
does  not  exceed 21 percent. 

1. INTRODUCTION 

T HE  proliferation  of  computers  within  the  last  decade 
has  created  the  need to  interconnect  computing  resources 

with  efficient  and  economical  communications.  Packet  radio 
broadcast  techniques have been  proposed as a  method  to 
implement  such  computer  networks  and  are an attractive 
alternative t o  conventional  land-based  line  networks  because 
radio  networks  are  not  dependent  on  fixed  topologies,  can 
be  connected  to  numerous  devices,  and  can  be  implemented 
with  inexpensive  radio  transceivers.  Many  novel uses for  future 
ratio,  networks  can  be  found  in [ 11 . The  first  packet  radio 
network,  the  ALOHA  system  [2] , [31 , demonstrated  the 
feasibility  of  this  approach as did  the  PRNET  of  the  Defense 
Advanced  Research  Projects  Agency  141.  Nodes in radio 
networks,  known as terminals,  are  geographically  separated 
and  can  communicate  only  by use of  the  broadcast  channel. 
It  is  thus  important  to  develop  techniques  that  make  efficient 
use of channel  bandwidth.  There  has  been  extensive  research 
in  creating  efficient  protocols  for  networks  in  which all 
terminals  are  assumed to  be  within  line9f-sight of each  other 
[ 5 ] .  In  such one-hop networks, all terminals  share  common 
information  about  the  status of the  channel.  The  channel is 
said t o  be idle if no  terminals  transmit, successful if exactly 
one  terminal  transmits,  and  to  have  a collision if two  or  more 
transmit  simultaneously.  In  networks  where  packets  must  be 
relayed  over several hops  before  reaching  their  final  destina- 
tion,  the  status of the  channel  can  be  known  immediately  only 
within  the  hearing  distance of a  terminal.  Since  a  transmitted 
packet is  received by  only  a  subset of the  nodes  in  the  net- 
work,  there is the  possibility  that  another  terminal  in  a  dif- 
ferent  part  of  the  network  may  also  be  successfully  transmit- 
ting  a  packet  during  the  same  time  since  it is not  disturbed  by 
the  first  terminal’s  transmission.  This  important  phenomenon 
is  called spatial-reuse of the  channel  and was studied  in [ 6 ] .  
The  local  nature of the  channel  state  information,  however, 
causes  difficulty  in  coordinating  the  transmissions of termi- 
nals.  In  single-hop  environments,  terminals  share  common 
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information  about  the  status of the  channel.  This  information 
can  be used t o  develop  efficient  single-hop  channel access 
protocols;  however,  such  protocols  cannot  always  be  readily 
adapted  to  multihop  environments. 

Another  example  in  the  one-hop  environment is the CSMA 
protocol  [7]  -[9].  In  this  protocol,  a  terminal  first  senses  the 
channel to  determine if the  channel is idle. If so, the  terminal 
transmits  its  packet  immediately.  The  probability of a  colli- 
sion  on  the  channel is equal  to  the  probability  that  two  or 
more  terminals  simultaneously  sensed  the  channel  idle  and 
transmitted  their  packets.  For  networks  that  are  not  separated 
by vast distances,  the  propagation  delay  between  terminals 
is small  enough  to  make  this  event  occur  infrequently.  In  the 
multihop  environment,  however,  hearing  the  channel  idle 
provides  information  only  about  the  transmitter’s  local  envi- 
ronment  and  does  not  guarantee  that  the receiver’s environ- 
ment is also  idle.  Thus  the  probability of incurring  a  collision 
is no  longer  only  a  function of the  propagation  delay  and 
packets will often  collide [ 101 . 

This  implies  that  using  protocols  developed  for  a  single-hop 
environments will not  always  perform  well  in  multihop  net- 
works.  The  performance of the  slotted  ALOHA  protocol  in  a 
multihop  environment  has  been  studied  in [ 1  1 ] and  in [ 121 
the  authors  calculated tHe transmission  radius  that  maximized 
throughput  for  a  random  planar  network.  In  this  paper  we 
generalize  their  work to  environments  where  radio receivers 
have  the  ability  to capture signals. A  receiver  equipped  with 
capture  can,  under  certain  circumstances,  successfully  decode 
one of several  simultaneous signals on  the  channel.  Capture 
models  for  single-hop  configurations  have  been  studied [ 131, 
[ 141 , and  demonstrate  increased  performance  over  noncap- 
ture  environments.  In  this  paper  we  show  that  for  a  multi- 
hop  random  network  increasing  the receiver’s ability to capture 
signals will always  increase  the  throughput of the  network. 

11. THE MODEL 
Throughout  the  paper  we will make  the  following  assump- 

tions  about  the  network: 
1 )  Topo1og.v: We assume  that  packet  radios  are  distributed 

according t o  a  Poisson  point  process on  the  plane  with  a  mean 
density of h packet  radio  units  (also called terminals)  per  unit 
area. We are  interested  in  finding  the  throughput  for  an  area 
containing  a  large  number n of packet  radios  and will ignore 
edge  effects.  This  topology  represents  an  instantaneous  snap- 
shot  of  a  mobile  packet  radio  network. 

2 )  Statiorzs: We assume  that  each  packet  radio  transmits 
with  fixed  power,  and  that all n stations  (Le.,  terminals) 
in the  network  transmit  with  the  same  power  on  the  same 
frequency  band.  Receivers  are  assumed  to  be  able  to  receive 
a signal from  another  station if that  station is within  a  radius 
R of the  transmitter,  and  under  certain  circumstances,  can 
successfully capture one of several simultaneous  transmis- 
sions  within  its  hearing  range.  Let us describe  the  phenomenon 
of capture  by  considering  a  receiver a which  is  within  range 
o f  two  transmitters t 1  and t2  and  assuming  that t 1  has,  a 
packet  destined  for a.  Let P1 and P2 be  the  powers  of  the 
signals  received by a,  and r1 and r2 be  the  distances  between a 
and  the  two  transmitters.  Whenever  both t l  and t2 transmit 
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their  packets  simultaneously,  their signals interfere  with  each 
other.  In  the  absence of capture,  station rl will not  be  re- 
ceived  correctly.  With  capture  however,  station a can  success- 
fully receive r1 's transmission if P1/P2 > P - ' ( O  < P < I ) ,  
where is  called the capture-ratio. Assuming  omnidirectional 
antennas  on  the  plane  and  equal  transmitting  power  for all 
stations,  this  ratio of powers  can be converted  into  a  ratio 
of distances  since  the  power of a received  signal decreases as 
the  inverse  square of the  distance.  Thus, using this  distance 
measure, a will capture r1 if r2 /r l  > P - l I 2 .  From  Fig. 1 we 
see that t 1  will be  successful if t2 lies outside  the circle of 
radius r 0 - 1 / 2 ,  called the capture  radius. Observe  that = 0 
implies  that  simultaneous  transmission will always  cause a 
collision (noncapture) ,  and 0 = 1  implies r1 will be received 
if it  is simply  closer t o a  than t 2  (perfect-capture).  Well-designed 
FM receivers have  a  capture  ratio  approximately  equal  to 0.7 
[13].  Although  the  appearance of the  exponent  (-1/2) of 
0 in  the  above  equation  appears  awkward,  this  selection 
simplifies  later  equations. If a  receiver  captures  the  stronger 
Of two signals in  our  model,  the  weaker  station's signal is 
essentially  considered t o  be noise,  Thus  the  capture  parameter 
of the  receiver is a  function of the  minimum  signal-to-noise 
ratio  that is necessary  for  correct  detection of signals on  the 
channel. We will assume  that  packets  contain  a  checksum 
which is utilized to  detect  collisions. 

3 )  Channel  Access  Method: We assume  that  the  time  axis 
is slotted  and will analyze  the  network  under  the  heavy  traf- 
fic  assumption.  In  particular,  we will assume  that  each  termi- 
nal  has  an  infinite  queue of packets,  the  first  of  which is 
transmitted  with  probability p in  each  slot.  This  assumption 
corresponds  to  running  the  network  at  channel  capacity  at 
which  point,  for  most  queueing  systems,  the  queue  lengths of 
the  nodes  of  the  network  grow  without  bound. We should 
note  that  the  stability of slotted-ALOHA  in  the  multihop 
environment  at  input  rates less than  channel  capacity is not 
at issue in  this  work. 

4)  Traffic  Matrix: Since  nodes  are  Poisson  distributed 
on  the  plane  with  mean  density h, and  since  any  station can 
send  and receive packets  within  a  radius R ,  every station 
has  on  the average N = hnR2 neighbors  (terminals  within 
its  hearing  and  transmitting  range). We assume  the  global 
traffic  matrix  for all the 11 nodes  in  the  network is uniform, 
and  thus  the  probability of sending  to  any  particular  node  in 
the  network is 1 / n .  

5 )  Routing: We choose  to  study  the case where  packets 
destined  toward  a  particular  node F i n  the  network  are  routed 
with  equal  probability  towards  one  immediate  neighboring 
node  that lies in  the  general  direction of F .  For  example, 
in Fig. 2 there  are k terminals  lying in the  direction  from 
transmitter f t o  final  destination F.  Transmitter t will pick 
one  terminal  from  its k neighbors  with  probability Ilk.  

These  assumptions  are  similar t o  those  presented  in [ 121 
except  for  the  addition of capture  and  the  nature of the  rout- 
ing  algorithm.  Let us justify  the  random  routing  assumption 
by comparing  it to  an  optimal  routing  model.  In [ 121,  packets 
are  assumed t o  be relayed t o  a  neighboring  terminal  that is 
closest  (furthest  along  the  path)  to  that  packet's  final  destina- 
tion.  This  optimal  routing  policy is not  realizable  for  a  mobile 
packet  radio  network  since  it  requires  the  exact  location of all 
terminals  (which  are  assumed to  be  moving) as  well as that of 
the  final  destination,  and  thus  provides  an  upper  bound  for 
network  performance.  This  upper  bound  can  be easily cal- 
culated  in  networks  without  capture  because  the  probability 
of being  successfully received  is independent  of  the  distance 
between  the  transmitter  and  receiver.  In  the  capture  en- 
vironment  however,  nodes  closer  to  the  transmitter  have 
a  greater  probability of receiving a  transmitted signal than 
those  further  away.  This  nonuniformity  makes  the  calculation 
of the  distance  covered  in  one  transmission  for  an 
optimal  routing  policy  difficult. To be  specific,  suppose  a 

Fig. 1 .  Defining the capture ratio. 

F 

Fig. 2. An optimal  routing policy. 

transmitter t has  a message t o  send t o  a  particular  final  node F 
(Fig.  2).  Suppose r has k neighbors  lying  in  the  half circle 
of his  transmission  radius,  toward F ,  and  that  their  distances 
from f are ( r l ,   r 2 ,  ..., r k ) .  Let ( z l  , z 2 ,  ..., z k )  be  the  vector 
of projected  distances  toward F ;  hence, if t transmits to  node 
i at ri, the  progress  toward F will be z i .  Let P(ri)  be  the 
probability  that  node i successfully receives t's transmission. 
A  locally  optimal  routing  algorithm for this  system is defined 
as one  that  sends all packets  toward F to  the  node j that lies 
closest t o  F. If t sends to  node a i ,  then  the  expected  forward 
progress  for  this  transmission is equal t o  ziP(ri), and  thus  an 
optimal  routing  algorithm  would  send  packets  to  the  node 
with  the  maximum value of ziP(ri). To  determine  this  value, 
one  must  calculate  the  joint  probability  for ( v i ,  r 2 ,  ..., r k )  
and (z1,  z 2 ,  ..., z k )  for all k ,  to  determine  the  density  for  the 
maximum  projected  distance.  This  would  then  be  uncondi- 
tioned  on k to  determine  the  density  for  the  maximal  forward 
progress.  In  the  noncapture  environment P(ri)  = P(ri)  for all 
i and j ,  and  thus  maximizing ziP(ri) implies  picking  the  maxi- 
mum z i  as in [ 121. Over  all sets of k nodes,  the  probability 
that  the  maximum  projected  distance is equal t o  a  certain 
value,  say z ,  is seen to  be  the  probability  that  there  are  no 
terminals  in  the half  circle from r that  are  closer  to F (the 
shaded  region A in Fig. 3 ) .  Since  terminals  are  Poisson dis- 
tributed  on  the  plane,  this  probability  equals e - - h A .  In  the 
capture  environment  however, P(ri)  = P(ri) only if r i  = ri ,  
and  the  above  calculation is no  longer valid. The  optimal 
routing  algorithm  now will no  longer  always  pick  the  node 
with  the  maximum zi because  the  product ziP(ri) may  not  be 
maximal.  To avoid these  computa'tional  complexities  and  in 
endeavoring t o  create  a  practical  bound  for  packet  radio  net- 
works, we have  chosen t o  assume  a  random  routing  policy 
(assumption 5) above).  Random  policies  have  been  proposed 
for  networks of this  kind [ 151  and  our  calculations will be  a 
lower  bound  on  the  performance  for  algorithms  that  always 
send  packets  in  the  direction of their  final  destination. 

With  this  random  routing  assumption  we will analyze  two 
models  that  differ  in  the  way  capture is defined  in  relation 
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Fig. 3. Probability of successful  reception. 

to  the  maximum  transmission  distance R .  Continuing  with  the 
scenario of 2), it  is  certainly  true  that  in  the  presence  of  multi- 
ple  simultaneous  transmissions  receiver a can  only  successfully 
receive  packets  from  its  closest  transmitting  neighbor.  Thus 
we can  say  that,  in  the  presence of simultaneous  transmission, 
a receives  from t l  if t l  isa's nearest  transmitter,  and  there  are 
no  other  transmitters  within  the  capture  radius.  Let us there- 
fore  suppose  in  our  scenario  that ti is a's closest  transmitter 
an?  is  located  a  distance r away.  Our  two  models  differ  in  the 
way they  define  the  capture  radius  in  relation  to  the  maximum 
transmitting  distance z: 

In  the  first case we  assume  that R is a  hard  boundary. 
Suppose  then  that r0- l  l 2  > R ,  or  in  words,  that  the  capture 
radius is greater  than a's maximum he,aring distant:. A trans- 
mitter  located  further  than R, say  at r with R < r < r6- ' l 2  
has  no  effect  on a's reception  since  its signal  is too  weak 
t o  be  received.  In  Model  1  we  assume  such  a  boundary  and 
define  the  capture  radius  to  be  equal  to  the  minimum of 
rp-1 l 2  and R .  The  area  that  must  contain  no  other  trans- 
mitters  for a t o  successfully receive t ,  's transmission,  the 
clean  area, for  Model  1 is the  annulus  of  inner  radius  equal 
to r and  outer  radius  equal  to  the  minimum  of r0-' /2 and R .  

This  definition  for  the  capture  radius  for  Model 1, however, 
gives weak signals coming  from  a  transmitter  located  at  a  dis- 
tance  slightly less than R ,  say  at R - E ,  a greater  probability 
of being  successfully  received  than  a  transmitter  with  a  smaller 
value of r since  the  clean  area;  the  annulus of inner  radius 
R - E and  width E ,  is infinitesimal.  In  practice,  however,  the 
boundary is not  hard  and if there i s  a  transmitter  at  a  distance 
slightly  greater  than R ,  say  at R + E ,  it  would  disrupt  recep- 
tion  since  the  ratio of the  powers of the  two  transmitters 
would  be  close t o  1 even  though  the  second  transmitter's 
signal is very 'weak.  Model 2 attempts to account  for  this 
discrepancy  by  defining  the  clean  area to   be ~ p - ~ / ~  regard- 
less of the  relationship  between r0 - l t2  and R. 

We observe  since  the  clean  area  for  perfect  capture (0 = 1) 
is  identical  in  both  models,  we  expect  our  equations  to  be 
the  same  for  this  case.  In  fact,  both  models  are  very  similar 
for /.3 > 0.7. We must  comment  that  both  models  make  two 
simplifying  assumptions  about  the  capture  phenomenon.  In 
actual  pratice,  one  particular  transmitter, say t l ,  will be 
captured  by  a  certain  receiver if the  ratio of its  received 
power,  to  the  sum of the received powers of all other signals 
simultaneously  heard  by  the  receiver, is greater  than  the 
specified  capture  ratio.  Letting Pri be  the  receiver  power  for 
the  ith  transmitter k be  the  number of transmitters  the  re- 
ceiver hears,  and  assuming  that  the  powers  are  sorted  into 
decreasing  order ( P r l  > P f 2  > ... > P r k ) ,  we have  that t1 

is captured if Prl  Pri  > 0. In  our  models  we  approxi- 
mate  the  sum of all the  powers of terminals t 2  through tk 
by the  power of the  next  strongest signal P f 2 .  This  assump- 
tion,  however,  is  not  critical  for  optimized  networks, as we 
will later  see,  since  the  probability  that  there  are  more  than 
two  transmitters  within  range of a given receiver  is  very small. 

The  second  simplifying  assumption  we  make  is  that  capture 
is a  deterministic  phenomenon  such  that if the  ratio of the 
received  powers is greater  than 0 then  the signal  is captured 
with  probability 1 .  In  actuality  however,  capture is probabilis- 
tic  and  has  a  density  that is a  function  of  the  ratio  of  the 
received  powers  and of the  capture  parameter.  The  results 
of our  deterministic  model  can  be  applied t o  this  more  realistic 
model,  however,  without  too  much  error,  by  using  a value of 
0 so that  if P r l / x f = 2  P f j  > 0 then  the  actual  probability of 
being  captured is greater  than  some  specified  confidence 
probability  (say 0.95). 

111. ANALYSIS OF MODEL 1 

A.  Expected Number of Successful Receptions 

We first  calculate  the  probability  of  successful  reception 
for  a  randomly  selected  terminal  in  the  network.  Let us as- 
sume  that  terminal a captures  the  transmission of its  closest 
transmitting  neightbor t .  Conditioned on this, a will success- 
fully receive t's packet if the  packet was addressed t o  a and if 
a did not  transmit  in  the  current  slot.  This  occurs  with  proba- 
bility 

P[ S I no  interference] = 
(1 - p ) (  1 - e - N / 2 )  

N 

where S is the  event  that  a  randomly  selected  terminal  success- 
fully  receives a packet  in  a  randomly  selected  slot, p is the 
probability  of  transmitting  in  the  next  slot,  and N is the 
average number of neighboring  nodes. We can  see  this  by 
first  defining  the  following  events. 

T :  The  event  that f sends to a .  

D: The  event  that t sends  in  the half circle  that  contains a.  

N( i ) :  The  probability  that  there  are i other  terminals  be- 
sides a in  the half circle of radius R from t. 

In  Fig. 2, for  example,  there  are k terminals  in  the half  circle 
from t toward F,  and  transmitter t is sending  in  the  direction 
of all the  labeled  terminals  in  the  figure. 

We know  that 

but  PITIDc] = 0 since  we  do  not  allow  packets  to  go  away 
from  their  destination.  Since t ' s  destination is uniformly  dis- 
tributed  over  the  plane,  the  probability  that  a  randomly 
chosen  terminal a within  a  radius R of t is in  the  direction 
of F ,  is equal  to  the  probability  that a lies in  the half circle 
of  radius R directed  from f t o   F .  Since a is equally  likely t o  
be  in  either half we  have P[D] = 1/2. Calculating  the  remain- 
ing  term, P[ TI D l ,  we  have 

m 

P [ T I D I  = P [ T I D , N ( ~ ) ~ P [ N ( I ' ) I D I .  
i= 0 

Each of these  terms is known,  for P[N(g)ID] = P[N(i)] i s  
Poisson  with  parameter hrR2/2 and P [ T I D ,  N(i)] f l / ( i  + 
1) since if there  are i other  terminals  besides Q ,  making  a 
total of i + 1  terminals, f will select  one  of  them  with  equal 
probability.  Refalling  that  the average number  of  neighbors  is 
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Combining  with  the  previous  calculations  we  obtain 

(1  - e - N / 2 )  

N 

Knowing  that  the  packet was addressed t o  a in  the  absence 
of interference we know  that a will successfully receive t 's 
packet if a does  not  transmit,  thus giving the (1  - p )  term  and 
establishing  the  above  expression. 

We must  now  calculate  the  probability  that  there is no 
interfering  traffic. We do  this  by  first  conditioning  on  the 
distance  between a and t t o   be   r ( r  < R ) ,  and  then  analyzing 
two cases. 

Case I )  p-1/2r < R [Fig. 4(a) / :  In  this case a will receive 
the  packet if there  are  no  other  transmitters  in  (r,  r/3-1/2), 
the clean  area. This  area is equal  to n(0-l /2r)2 - nr2 = 
nr2( l / p  - 1)  which  contains  no  transmitters  with  probability 

Case 2)  p - I l 2 r  > R [Fig. 4(b)J:  The  area  that  must  now 
be clean is  see to   be (nR2 - nr2)  which  occurs  with  probability 

The  density  for  the  distance  between  a  randomly  selected 
terminal  and  its  closest  transmitting  neighbor  can  be easily 
calculated.  Letting X be  the  random variable for  this  dis- 
tance,  and  knowing  that  busy  terminals  are  Poisson  distributed 
on  the  plane  with  parameter h p  we have 

P [ T ]  = + E L T J D ]  =- 

e-Apnr2 (1  I P -  1 ). 

e - A p n ( R 2 - r 2 ) .  

P [ X  < r ]  = 1 - P [no busy  terminal in (0, r ) ]  

= 1 - , -hnpr2  

Hence,  lettingf(r)  be  the  density  for X 

Using this  in  the  above,  after  unconditioning  we  obtain 

P [ S ]  = 
(1 - p)(  1 - e - N / 2 )  

N 

Performing  the  integration we have 

For  further  equations  let Y 5fi  (1 - e - N P )  + ( 1 - f l )Npe-NP.  

tively  plausible. 
We will discuss  two  special cases t o  see that  they  are  intui- 

Case 1)  = 0: The  noncapture case for  which 

P I S ]  = (1 - p)(  1 - e -N/2 )pe -Np ,  

Intuitive  explanation-For a t o  receive it  must  not  transmit 
and  this  occurs  with  probability  (1 - p ) .  Receiver a also  cannot 

(b) 
Fig. 4. (a) Case 1 .  Probability of  no interfering traffic for 0 -IIZr < R .  (b) 

Case 2. Probability of  no interfering  traffic  for B 2 R. 

be isolated  from  other  nodes  in  the  network.  In  particular, 
one  half circle of  radius R must  contain  at  least  one  other 
terminal  and  this  occurs  with  probability ( 1  - e c N I 2 ) .  Out  of 
the  neighbors  in  this  region  only  1  can  transmit  (occurring 
with  probability N p e - N P ) ,  and  on  the average that  transmitter 
is  surrounded  by N neighbors  and  thus  transmits t o  receiver a 
with  probability  1/N.  Combining all the  above  probabilities 
we obtain  the  above  expression. 

Case 2)  0 = 1 : The  perfect  capture case where 

Intuitive  explanation-Again, a must  be  silent  which  occurs 
with  probability ( 1  - p ) ,  and  must  not  be  isolated  from 
nodes  in  one  half circle of  radius R which  occurs  with  proba- 
bility  (1 - e - N / 2 ) .  There  must  be  at  least  one  transmitting 
station  in  its  neighborhood  (occurring  with  probability 1 - 
e - N p )  and  since  only a's nearest  neighbor can be success- 
fully received by a ,  the  probability  it  transmits  a  packet  to a 
on  the average is 1/N. 

To calculate  the  expected  number  of successes in the  net- 
work  (denoted  by #S) we  merely  have  to  multiply  the  previ- 
ous probability  by  the  number of nodes n in  the  network 
to  obtain 

We can  check  this  equation  against  the  well-known single- 
hop  slotted  ALOHA  results  for  the  infinite  population  model 
with  Poisson  traffic  statistics. We do  this  by  setting,  in  (l), 
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17 = N and = 0, and  then  performing  two  limit  operations. 
By letting  p + 0 and I I  -+ m in  such a way as t o  preserve the 
product G = np  to  be a constant,  we  obtain  Poisson  traffic 
characteristics  with  parameter G .  We then  obtain 

lim ?! (1  -p)(l  - e-NI2)Npe-NP = G e - G .  

P-fO 
G = n p  

n=N+m . N 

This  reaches  its  maximum  at G = 1 giving the  familiar  maxi- 
mum  throughput  for  the  slotted ALOHA channel [ 131 of l /e .  

It can  be  seen  that  the  function E[#S]  is increasing  in 0, 
the  capture-parameter,  by  writing E[#S] as a linear  function 
of p. 

E [  #S] = H(0)  = K(P( 1 - e-Np(  1 - Np)) + Npe-NP) 

where K = (n /N) (  1 - p) (  1 - r N I 2 ) .  This  describes a straight 
line  with  slope nz = 1 - e c N P ( l  - Np).  But  this  slope is 
always  positive  since nl < 0 implies  eNP < 1 - N p  which is 
false. We conclude  that  increasing  the receiver’s ability t o  
capture signals increases  the  expected  number of successes 
in the  network. 

We now  seek to  determine  the  maximum  number of ex- 
pected  successes  in  the  network.  Certainly  this  number  must 
be  less than l 7 /2  since  every  successful  receiver is associated 
with  exactly  one  successful  transmitter.  It is easy t o  verify 
this  analytically.  Numerically  calculating  the  maximum of 
E[#S]  for  various values of demonstrates  (see  Table I)  that 
the  maximum  expected  number of terminals  in  the  network 
that  could engage in  successful  communication  at  any given 
slot  is  about 21 percent  for  perfect  capture  and  about  14 
percent  for  the  noncapture  environment  (observe  that  these 
figures  are  double of those of Table I since  every  successful 
receiver is associated  with a successful  transmitter). We note 
here  that  the values of N and p that  maximize  the  probability 
of success do   no t  also maximize  the  throughput  of  the  net- 
work.  This is a  result of the  dependency  of  the  probability  of 
successful  transmission and the  maximum  transmission range 
R as manifest  in  the  equation N = h R 2 ,  and will be dis- 
cussed  in  greater  length  in  the  next  section.  Observe  that  the 
results of Table I would  only  be  applicable  to  networks  in 
which all packets  went  exactly  one  hop t o  reach  their  final 
destination. 

B. Expected  Forward Progress 
We are  now  in  a  position t o  derive  the  density  for  the 

distance  between  transmitter  and  receiver  for a successful 
transmission. If we  define X to  be  the  random variable asso- 
ciated  with  the  distance  between a transmitter  and  its  intended 
receiver ( r  in Fig. 5 )  we can  write 

2r 

R2 
P [ r < X < r + d r ]  =- dr. (3) 

Thus,  we  have  that 

P [ r < X < r + d r , S ]  
P [ r < X < r + d r J S ]  = 

p i s 1  

p(1-   p)( l -   e-N/2)  2r 

p i s 1  R2 

- - - 

. e-hnp[lTliIl(rp-1/2R)]2 dr  (4) 

or  defining q(r)  to  be  the  density  for X and l/s = ( N p ) / Y  

TABLE I 
OPTIMAL N AND p FOR A SINGLE HOP IN THE FIRST  MODEL FOR A 

GIVEN 0 - 
P 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

- - 

- 

N I P  
PIE,] 

,07280 
,07557 
,07846 
,08154 
,08484 
,08835 
-09210 
,09609 
,10030 
,10471 
10946 

__ - 

Fig. 5. Calculating  the  density  between  the  transmitter  and  the  receiver. 

we  may  rewrite  (4)  to  obtain 

It  can be  easily  verified that  this  integrates t o  1  and  thus 
is a proper  density. 

Suppose as shown  in  Fig. 6, transmitter t is sending a pa.cket 
t o  final  destination F through  intermediate  node a .  We wish 
t o  calculate  the  progress of the  packet  towards  its  final  destina- 
t ion.   To simplify  the  calculation we assume  that  forward 
progress will be  the  same  for  any  node  on  the  line  perpendicu- 
lar  to  the  direction  of  the  destination,  line L in  the  figure. 
This  assumption is reasonable if the,distance D is much  greater 
than  R. Because terminals  are  randomly  distributed  on  the 
plane,  for a given distance r and a given destination F ,  the 
angle 0 will be  uniformly  distributed  over (-71/2, n / 2 ) .  Define 
Z t o  be  the  random variable denoting  the  forward  distance. 
We see that  for  a given r  the  probability  that Z is  less than  some 
value z is the  same as the  probability of 16 I being  larger 
than  c0s-I ( z / r ) ,  or  letting F ( z )  be  the  distribution of Z 
we  have 

1 ;  r < z  
F( z  1 r )  = 2 cos-1 ( , 

1 -  ‘’’’ O < z < r < R .  
71 

Differentiating  this  with  respect t o  z we  derive  the  condi- 
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Fig. 6. Calculating  the  expected  forward  progress. 

tional  density 

r < z  

We can  now  calculate  the  expected  progress given r 

2r 
E [ Z  Ir] = - 

71 

We can  uncondition  this  by using the  density of (5) to  obtain 

2 

sR 77 

R p1I2  
E [ Z ]  = 7 [ 2r2e-Apnr2/fl dr 

In [ 18 1 it  is shown  that 

and  thus  using  this  in  (6)  and  reducing  we  finally  obtain 

C. Expected Throughput 

689 

The  increase  in  the  throughput y with  the  square  root of the 
number of terminals  in  the  network is a  result of the  spatial 
reuse of the  channel  and was also  obtained  in [ 121.  Observe 
that  the  equation  obeys  our  intuition  for p = 0 or  p = 1  where 
the  throughput  is  zero,  and  that  the ( 1  - term is the 
probability  that  the  network is connected  over  one  hop. 
Once again we  can  show  that  the  throughput  of  the  system 
is an  increasing  function  of 0 since if the  function is increas- 
ing  in a::= N T t h e n   i t  is  also  increasing  in 0. Thus, y is linear 
in a with  slope rn = xpl (4J(Np)’-lj!/(2j + l)!)  - 2/3 
which  is  clearly  positive  since  the  minimum  of tn is 2/3.  Thus 
as we  have  seen  previously,  increasing  the  capture-parameter 
can  only  increase  performance. 

D.  Discussion of Results 
In all the  following  graphs  and  tables we use normalized 

throughput  y’(N, p ,  0 )  y(N, p ,  b)/fi, hence  eliminating 
the  dependency of the size of the  network  from  our  equations. 
We must  note  that  the  square  root of n dependency  on  the 
throughput is the  important  factor  that  lets us achieve,  by 
voluntarily  limiting  the  strength of the  transmitted signal 
so it  reaches  only  a  subset of the  nodes  in  the  network,  through- 
puts  greater  than  by  running  the  network as a  one-hop  ALOHA 
network  where  each  node  transmits  with  a  power  such  that 
every  node  in  the  network  hears  the  transmission.  For  ex- 
ample,  in  Table I1 for 0 = 0.7,  we  see  that 7’ = 0.0749282. 
To  determine  the  number of terminals  needed  in  the  2etwork 
t o  achieve throughput  greater  than  l/e  we  set fiy > l / e  
which  implies n e 24.  Thus,  in  a  network  with  more  than  24 
terminals,  it  pays to voluntarily  limit  the  transmission ranges 
so that  on  the average only N = 4.99725  other  terminals 
are  within  hearing  range.  Fig.  7  demonstrates  graphically  the 
result  we  saw  in  the  previous pages that  increasing  the  capture- 
parameter  improves  system  performance.  Here we plot y’ as 
a function of p for a fixed N and  various values of p. In  Table 
I1 we  have  listed  the  maximum y’ over all  possible N and p 
values for  a  fixed 0 value. We note again that  the y’ is increas- 
ing  in 0. Observe  that  the  spread  of  the  optimal values of N 

(6)  and p over all 0 values  is not  wide.  Since  these values do  not 
change  substantially  with 0, the  capture-parameter of packet 
radios  in  the  network  does  not  need  to  be  known  to  a  high 
degree of accuracy to determine  the  network’s N a n d  p values 
that  achieve  optimal  performance. I n  Table I1 we  have  also 
listed  the  probability of a  successful  transmission as well  as 

(7)  the  expected  forward Drogress for  the  same N and p values. 
By comparing  Tables I and 11, we observe  that values of N and 
p which  maximize 7’ do  not also maximize P [ S ] .  Although 
it  might  seem  intuitive  that  maximizing  the  number of 
successes in  the  network  by  picking  an  optimal  transmission 

(8) range  R  and  hence  by  picking N = h r R 2  would  increase  the 
throughput of the  system,  a  little  thought  shows  that  this is 
not  necessarily  true. We can  see  this  from  Table  I  where  the 
N values that  maximize P [ S ]  are  seen to  be  small,  approxi- 
mately  2.6  for 0 = 0.7.  The  network is in  this case divided 

We can  continue  along  the  same  lines as in [ 12 1 t o  calculate into  many  receiver-transmitter  pairs  in  an  attempt  to  take 
the expected  throughput for the network for each slot.  For full  advantage  of  the  spatial  reuse  of  the  channel,  and  although 
any  terminal, the expected  path  length this  increases  the  probability of successful  transmission,  packets 
between  it  and  another  randomly  selected  terminal is given in in such  an  environment  must pass Over many hops  before 
[ I61  as d = (128/45n)[n/hrl  ”’. Since z, as calculated  in reaching  their  final  destinations.  This  tends t o  decrease  the 
the  Previous  section, is known,  the  number of hops  a  ran- number of packets  reaching  their  final  destinations  in  any 
domlY selected  Packet Will take is given by h = d/:. Therefore, one  slot,  and  thus  reduces  the  throughput of the  system. 
the average number of messages delivered to  their  final  destina- This  tradeoff  between  the  probability of Success and the 
tions  per  slot,  the  throughput,  is given by throughput of the  system as governed  by  the  number of hops 

between  source  and  destination is a  fundamental  issue of 
~(0, N, p )  = 2 *(I- p)(l-  e-N/2)pe-N/2  multihop  systems  and  occurs  in several  guises. For  ex?mple, 

we have  already  shown  that  increasing 0 will increase y . This 
increase  in y’ can  result  from  an  increased P [ S ]  , an  increased 7 
(thus  decreasing  the average number of hops  a  packet  takes 
from  source  to  destination),  or  a  combination of both. We see 
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TABLE I1 
OPTIMAL NAND p FOR  THE  FIRST  MODEL  FOR  A  GIVEN l3 

I 1  I I I1 I 1 
P 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

- - 

- 

N 

4.33261 
4.36181 

4.49194 
4.41670 

4.58656 
4.70160 
4.83818 
4.99725 
5.17892 
5.38063 
5.59807 

P 

0.18012 
0.18193 
0.18531 
0.18978 
0.19523 
0.20155 
0.20867 
0.21647 
0.22474 
0.23324 
0.24164 

= 
Y’ 
P 

0.0584586 
0.0591979 
0.0605900 
0.0624732 
0.0648259 
0.0676626 
0.0710160 
0.0749282 
0.0794432 
0.0845999 
0.0904239 

PIE,] 

0.05991 
0.06285 
0.06577 
0.06879 
0.07190 
0.07526 
0.07875 
0.08242 
0.08624 
0.09022 
0.09433 

- 
z 

0.42441 

0.39687 
0.40834 

0.38797 
0.38094 
0.37541 
0.37120 
0.36823 
0.36649 
0.36601 
0.36682 

MODEL 1 

MODEL 2 - - -- 

P 

Fig.7.  y ’ a s a f u n c t i o n o f p f o r N = S a n d ~ = O . 1 , 0 . 7 , a n d l . O .  

in  Table I1 that   asp increases  from 0 to   0 .9 ,P[S]  increases  and 
decreases.  Thus,  for  optimal  throughput,  packets  must  travel 
over  more  hops  but  they  “hop”  more  frequently,  once  again 
showing  the  tradeoff  betweenP[S]  and Z .  

In Fig. 8 we show  the  relationship of y’ as a  function  of 
p for  fixed N and p. We notice  that  for  any N ,  optimal  per- 
formance is degraded  for  small  changes of p from  its  optimal 
value p * ,  but  that as N increases,  tfie  curves  around  this p *  
become  narrow.  This  variation of y for  large N results  from 
the  fact  that  the  transmission of any  packet  radio  interferes 
with  a  larger  number of other  terminals.  This  increase  in  the 
number  of  collisions  increases  the  sensitivity of the  through- 
put  for  perturbations of the  transmission  probability  from 
its  optimal  value. 

We can  unify our discussion of these  results  by  defining 
the  offered  load  per  unit  area to   be  G = Np.  From  previous 
results [ 171  for  finite  population  slotted ALOHA networks, 
we  known  that G = 1  optimizes  network  throughput.  In  the 
multihop  environment,  however,  connectivity  of  the  net- 
work  must  be  preserved.  This  consideration, as noted  before, 
manifests  itself  in  the c = (1 - term  appearing  in  the 
equation  for 7. If p is large, G = 1 implies  that N = l / p  % 

1  which  tends  to  disconnect  the  network  since c X 0.39. 
Obviously,  optimal  throughput  for  this  case  would  have N > 
1 and,  thus, G > 1.  We would  thus  expect G = 1 only  in 
cases where p is small  enough  to  make N sufficiently  large 
to  assure connectivity. We must,  however,  take  account of 
capture in discussing  the  offered  load.  In  the  noncapture 
environment we would  expect  the  offered  load  that  maximizes 
throughput to be less than  that  for  the  capture  environment 
because  the  probability  a  transmission  suffers  a  collision  is 
greater  for = 0 than  for = 1.  Thus,  increasing G = N p  
has  a  greater  effect  in  increasing  the  number of expected 
collisions  in  environments  with  noncapture  than  for  those 
with  perfect  capture.  To  check  this  intuition, y e  numeri- 
cally calculated  the N value that  maximized y for  fixed 
p and p and  plotted G = Np against p in  Fig. 9 .  We see  that 
curves  for  high p values dominate  those  for lesser values, 
justifying  our belief that  the  offered  load  that  maximizes 
throughput  can  be  greater  for  larger p, and  that as p increases 
so does G ,  illustrating  the  relationship of the  connectivity 
factor c has  in  sparse  environments. We can  lend  some  mathe- 
matical  insight  into  these  graphs  by  definiflg  the effective 
n u m b e r  of ne ighbors  N t o  satisfy N = N /(1 - ePN‘l2). 
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Fig. 8. 7 '  as a function ofp for fl  = 0.7 and N = 2, 5 ,  and 8. 
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Fig. 9. G = Np as a function ofp for optimal Nandp, and fl  = 0.7 and 1 .O. 

One  then  interprets N as the average number  of  terminals 
per  unit  area  that  results  when  we  randomly  distribute  terminals 
on the  plane  with an  average  density of N' terminals  per  unit 
area,  and  ,condition  upon  having  a  connected  network.  The 
(1 - eWN 1 2 )  term is thus  seen to be  the  conditional  proba- 
bility of hop  connecfivity. Using N' instead  of N in  calculating 
the  offered  load, G = p M  X 1 implies  that N, X I / p  and 
using  this in the  above  equation  that  defined N ,  we  would 

have N fi = l/p(l - e-1/2P).  To check this intuition,  we 
used the values  obtained  in  generating  the  offered  load  curves 
of Fig. 9 for  fl  = 1 where  we  have  seen that for  low p values, 
G * 1 .,In  Table 111 w'e produce  the N and p values that  opti- 
mize 7 ,  as.  well  as  their  product,  the  offered  load G in  the 
left  part  of  the  Table.  In  the  right  we  tabulate  the hyp,othesized 
values  using ;he effective  number of neighbors N . We see 
that N and N are  approximately  equal  and  that  the  effective 
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TABLE 111 
THE  EFFECTIVE  NUMBER OF NEIGHBORS  FOR  OPTIMAL N A N D  p 

0 10 I I I I 1 1 1  1 I 0.091 
MODEL 1 

MODEL 2---- ::I 
0 06 

0.02 t p = 0.9 

/ 
BOTH MODELS 

p = 0.01 

/ i 
O.oo r 1 I I I I 1 I 1 1 0  20 3 0  4 0  50 6.0 7.0 80 9.0 

N 

Fig. 10. 7' as a  function of N for 0 = 0.7 andp = 0.01,0.2, and 0.9. 

number  of  neighbors N' is strictly less that N. Comparing G 
and G' we see  that G' is much  closer  to  1  throughout  the 
range of p  lending  support to our  previous  intuitive  arguments. 

In  our last  plot  for  this  section,  Fig.  10, we graph y as a 
function of N for = 0.7 and  various  values of p .  Observe 
that  for  the  near  optimal N for  p = 0.2 (namely N = 5), the 
curve is very  flat.  This  implies  it is not  necessary to  determine 
N t o  a high  degree of accuracy t o  achieve  near  optimal  per- 
formance. 

IV. ANALYSIS MODEL 2 
Recall  in  Model 2 we  assume  that  any  other  transmitter 

within rP-l/' of a  packet  radio, receiving a  packet  from 
another  transmitter  a  distance r away, will cause  a  collision 
on  the  channel. We thus  do  not  need  to  divide  the  clean  area 
into  two  regions. We will be brief  in  describing  the  results  of 
this  section,  since  most  derivations follow lines  similar to  those 
in  Model  1. 

A.  Expected Number of  Successful Receptions 
The  clean  area  for  a  transmitter  at  a  distance  of r from  the 

receiver is now r0- l  1 2 ,  and  thus  the  probability of this  area 

having no  other  transmitters is e-Apnr2/@. We thus  have 

Integrating  this  over I O ,  R ]  

and  hence  the  number of successful  receptions is 

Once  again,  the  expected  number of successes  in  the  network 
is an  increasing  function in 0. This  can  best  be  seen  by  writing 
E [  #S] as a  function of and  showing  that  the  slope is positive. 
Let H(P)  = KP(1 - e-NP/@)whereK=n(l   -p)( l   5e-N12)/N.  
Differentiating H(P) with  respect  to 0 yields H ( P )  = 1 - 
e-NP/fl(Np/P i- 1)  which  must  be  greater  than  zero  since 
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eNPIP > 1 + N p / P .  It  makes  no  sense  to  try  to  obtain  the 
limit of the  above  expression  for  the  infinite  population 
Poisson  traffic  slotted  ALOHA  model as we  did  in  Model 1 .  
The  reason  for  this  concerns  our  definition  of  capture  for 
Model 2 .  If we  let p go to zero,  the  capture radius r0- l2  
goes to infinity.  Since all our  derivations  assume  terminals 
to be  Poisson  distributed  over  the  plane  with  parameter 
h, this  infinite  capture  radius will contain  an  infinity of ter- 
minals  which  for  any p > 0 will have an  infinite  number of 
transmitters  with  probability  1,  thus  guaranteeing  a  certain 
collision.  The  equation  above  rightly  indicates  that  for 0 = 0 
the  expected  number  of  successes is zero.  In  Model  1  since 
the  capture  radius was limited  to  a  maximum of R ,  it  did 
make  sense to  let 0 + 0 since  the  capture  radius  was  bounded. 
Once  again  we  can  determine  analytically  that E [ # S ]  < n / 2  
and  produce  Table IV which  contains  the  probability  of  success 
for various 0 values.  Observe  that  for 0 = 1  these  results 
agree with  those  of  Model 1 .  

B. Expected  Forward Progress 
We first  calculate  the  density  for  the  distance  between a 

successful  transmitter  and  its  receiver.  Using  the  same  defini- 
tions as in  the  previous  section,  we  have 

Defining I/s = [ p ( l  - p ) ( l  - e - N / 2 ) ] / P [ S ]  we  can  write 
g ( r )  as 

We thus  calculate  the  expected'  forward  progress  for  each 
transmission to   be 

4 R  
E [ Z ]  = - snR2 1 r 2 e -  kr2  dr  

where k = hnp/p .  Using the  result  from [ 181 to  expand  the 
integral  and  then  simplifying,  we  finally  obtain 

C. Expected  Throughput 
Using the previous  results,  we  can  now  write 

. .  m 

(1 1) 

Again,  this is an  interesting  function of 0, has the  square 
root  dependency  on  the  number  of  nodes in the  net- 
work,  and  explicitly  accounts  for p = 0, p = 1  cases and 
network  connectivity. 

D.  Discussion of  Results 
To  compare  the  performance of the  two  models we pro- 

duced  the  same  tables  and  graphs  for  Model 2 as  we did  for 
Model 1. Earlier  we  observed  that  the  two  models  should  be 
identifical  for = 1  since  the  clean  area  in  both  models  for 
this case are  identifical.  Algebraic  comparison  between  simi- 
lar  formulas  from  both  models  shows  that  they are  equal  for 
0 = 1 and  the  results  in  this  section  show  that  as  grows 

TABLE IV 
OPTIMAL NAND p FOR A SINGLE HOP IN THE SECOND MODEL FOR A 

GIVEN p 

10.3 1 1.8104 1 0.27811 I 0.05794 1 0.4 2.0412 0.29824 0.06775 
0.5 2.1373 0.31373 0.07789 

TABLE V 
OPTIMAL NAND p FOR  THE  SECOND  MODEL  FOR  A  GIVEN 

0.6 

0.9 

4.08648 
4.37335 
4.64158 

5.13830 
4.89561 

5.37173 
5.59807 - 

0.16375 
0.18264 
0.19828 

0.22293 
0.21  153 

0.23289 
0.24164 

0.0457039 
0.0545213 
0.0626785 

0.0773940 
0.0702766 

0.0840929 
0.0904239 

11 0.05787 I 0.35371 I 

I/ 0.06616 I 0.35676 I 0.07330 0.35936 
0.07953 0.36159 

11 0.08503 1 0.36355 1 

larger,  the  results of the  two  models  are  approximately  equal. 
We therefore  restrict  our discussion of the  curves  and  tables 
in  this  section  to  relevant  differences  between  the  two  models. 

We observe in  Table V that  for Model 2 there is a  wider 
spread for  optimum N and p values for  the range  of values. 
This is due  to  the  larger  capture  radius  for small 0. One  curious 
difference  between  this  and  Table I1 is that  here as 0 increases 
so does 2, whereas  in  Model  1  we  observed  a  decrease  in  the 
z values. The increase for Model 2 can  be  explained  by  the 
fact  that  for  low values  of 0,  small  values  of r ,  the  distance 
between  transmitter  and  receiver,  have  higher  probability 
than  greater r values  because the  capture  radius  for  these 
values  is  large.  As 0 increases,  the  capture  radius  for  a 
fixed r decreases  in  Model 2 and  thus  larger r values are  more , 
heavily  weighted  and  thus  increase ?. This  explains  the  increase 
in 'z for Model 2. In  Model 1,  however,  the  capture  radius was 
bounded  to  be less than R .  Thus,  the clean  area is small  for 
terminals  that lie  close to  R and  this  increases  the  probability 
that  the  projected  distance will be  large.  This is the  reason  why 
the  throughput  for  Model 1 is always  larger  than  that  for 
Model 2. 

In  Fig. 7 we  plot y as a function of p for N = 5 and various 
0 values. Once  again we-see  the  dominance  of  the  higher 0 
curves. We can  also  observe  that  curves  for  Model  1  dominate 
those  for  Model 2. Comparison  of  the curves  for  the  two 
models  on  this  plot  shows  the  dominance of throughput 
values  of  Model  1  over  those  of  Model 2 .  This  dominance 
is a  result  that  the  probability of  collision is much  larger 
in  the  second  model  for  any  value  of N and p and  hence 
decreases the  expected  throughput  of  the  system.  Fig. 9 
shows  again  the  fluctuations  of  the  offered  load  for  increas- 
ing p values  and  we  note  that  the  curve  for = 0.7 is almost 
identical to  the  same curve for Model  1.  Fig.  10  shows  the 
flatness  of  throughput  curves  for  fixed f l  and p ,  over  values of 
N .  

- 

V. CONCLUSIONS 
We have  analyzed  two  models of cqpture  in  a  random 

planar  network  where  slotted  ALOHA was  used to  broad- 
case  packets on  the  channel.  The  results of the  two  models 
are  similar  for  capture-ratios  achievable on  good FM receivers 
and  thus  either  could  be  used  to  analyze  networks of this 
kind. We have  seen  that  increasing  the  capture  parameter  in- 
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creases  the  throughput of the  network  and  conclude  that 
capture is a desirable  feature  of  the  radios of such a network. 
The  tradeoff  between  the  probability  of a successful trans- 
mission  and  the  expected  number  of  hops  taken by a packet 
in  the  network  has  been  delineated,  and we have  seen  that  even 
in  ideal  conditions  with  perfect  capture  and  one-hop messages, 
no more  than 21 percent of the  nodes  in  the  network,  on  the 
average,  can be  engaged in  productive  communications  over 
any  slot.  The  square  root  of n dependency o,n the  throughput 
has been ‘shown t o  substantially  increase  the  throughput of 
the  network  over  conventional  one-hop ALOHA networks 
when  the  number  of  nodes  in  the  network is sufficiently  large. 
The  critical  parameter  to  network  optimization  has  been 
shown  to  be  the value of p ,  the  probability of transmitting 
in any given slot. 

r31 

VI 
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